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We propose a scheme for the quantum nondemolition �QND� measurement of Fock states of a nanome-
chanical resonator via feedback control of a coupled circuit QED system. A Cooper pair box �CPB� is coupled
to both the nanoresonator and microwave cavity. The CPB is readout via homodyne detection on the cavity and
feedback control is used to effect a nondissipative measurement of the CPB. This realizes an indirect QND
measurement of the nanoresonator via a second-order coupling of the CPB to the nanoresonator number
operator. The phonon number of the Fock state may be determined by integrating the stochastic master
equation derived, or by processing of the measurement signal.
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I. INTRODUCTION

An important benchmark for quantum control is the abil-
ity to prepare and detect a harmonic oscillator in a Fock
state, an energy eigenstate. This may soon be achieved in
nanomechanical resonators,1 which are more usually pre-
pared in quasiclassical displaced thermal states due to the
ubiquity of environmental interactions.2 The ability to pre-
pare a mechanical resonator in a Fock state will provide ac-
cess to processes that mark the quantum-to-classical
transition.3

Fock states have already been prepared in other instances
of harmonic oscillators. Using a cavity QED system, few-
photon Fock states of an electromagnetic mode have been
prepared deterministically,4 via state reduction5,6 and via
quantum nondemolition measurement.7,8 Few-photon optical
Fock states have also been generated conditionally using
parametric down conversion.9 Taking advantage of the
higher level of control afforded by circuit QED, Fock states
containing up to 15 photons have also been deterministically
generated.3,10,11 The motional state of a trapped ion provides
another instance of a harmonic oscillator, and indeed Fock
states have been prepared by tuning the interaction between
the ion’s motional state and its internal electronic levels via
an external laser.12

One may consider analogous schemes for the generation
of such states of macroscopic mechanical resonators. Indeed,
in an extraordinary experiment, Fock states of a mechanical
oscillator, in the form of a suspended film bulk acoustic reso-
nator resonantly coupled to a superconducting phase qubit,
have been demonstrated.13 However, it would still be desir-
able to generate mechanical Fock states in a lower frequency
mechanical resonator with a clear separation of mechanical
and electromagnetic degrees of freedom. In order to condi-
tionally prepare a Fock state of such a resonator, one requires
a coupling to its number operator. In general, this is difficult
to realize, though an optomechanical “membrane-in-the-
middle” system does so.14 In other cases, a key ingredient is
the coupling of the resonator to a qubit. Coupling between a
nanoresonator and a superconducting qubit has recently been
demonstrated by LaHaye et al.15 Irish and Schwab proposed
a scheme for the generation and detection of a Fock state of

a nanoresonator via coupling to a Cooper pair box.16 Jacobs
et al.17 have considered the continuous measurement of a
nanoresonator using circuit QED; the nanoresonator is
coupled to the qubit and the qubit is readout using a super-
conducting microwave cavity.18 Here the linear coupling be-
tween the nanoresonator and the qubit is brought into reso-
nance by driving the nanoresonator at a frequency equal to
the detuning between the nanoresonator and the qubit. It is
shown that, in spite of the linear coupling, the effect of the
measurement is to localize the nanoresonator onto its Fock
states. A dispersive coupling to a qubit with the nanoresona-
tor number operator has also been considered with the pro-
posed readout in this case being through a single-electron
transistor or a quantum point contact.19 The measurement of
Fock states by direct coupling to a single-electron transistor
has also been investigated.20 Alternative proposals for condi-
tional Fock state generation in nanoresonators are based on
engineered cross-Kerr interactions,21,22 in analogy with the
situation commonly encountered in an optical setting.23

The system under consideration here is composed of a
nanoresonator, a superconducting microwave cavity, and a
Cooper pair box. Both the nanoresonator and the microwave
cavity are separately coupled to the Cooper pair box
�CPB�.24 The direct coupling between the nanoresonator and
the cavity could also be considered and it may be shown that
resolved sideband is achievable using a similar analysis.25

There is a resonant second-order coupling between the nan-
oresonator and the CPB, which gives a Hamiltonian coupling
between the nanoresonator number operator and the qubit
inversion �z �in the energy eigenbasis of the qubit� as b†b�z.
In the adiabatic limit, the qubit coherence ��−� may be con-
tinuously readout via homodyne detection on the output of
the microwave cavity and via feedback control of the CPB
charge bias a nondissipative measurement of �y may be
created.26 Such feedback has been considered before in the
context of stabilizing pure states of a qubit.27 Thus we have
an indirect measurement of the nanoresonator phonon num-
ber and may conditionally prepare a Fock state of the
nanoresonator.17 In principle, the conditional evolution of the
system may be reconstructed by integrating the stochastic
master equation, though the phonon number may be ex-
tracted �and quantum jumps observed� from the oscillations
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of �y by filtering the homodyne measurement record. Note
that feedback control of nanomechanical systems has previ-
ously been considered for the purpose of cooling the me-
chanical mode toward its ground state28,29 and for squeezing
of its quantum fluctuations.30,31

II. SYSTEM AND HAMILTONIAN

The Hamiltonian describing this system in the
Schrödinger picture and in the charge basis of the CPB, is

H̄S = ��ca
†a + ��mb†b +

��

2
�̄z +

��

2
�̄x + �g�a + a†��̄z

+ ���b + b†��̄z, �1�

where �c is the resonance frequency of the cavity, �m is the
resonance frequency of the nanoresonator, and the CPB is
described by ��=−4EC�1−2ng� and ��=−EJ cos��	e /	0�.
Here EC=e2 /2C
 is the charging energy of the box,
ng=ng

m+ng
c, ng

m=Cg
mVg

m /2e is the dimensionless gate charge
due to the nanoresonator voltage, ng

c =Cg
cVg

c /2e is the dimen-
sionless gate charge due to an additional control voltage,
EJ= Ic	0 /2� is the Josephson energy of each of two
Josephson junctions between the CPB and its superconduct-
ing reservoir, 	e is the external flux threaded through the
two Josephson junctions, 	0 is the magnetic-flux quantum,
and Ic is the critical current of each Josephson junction to the
CPB. The total capacitance of the box is given by
C
=2CJ+Cg+Cg

m+Cg
c, where CJ is the capacitance of each

Josephson junction, Cg is the coupling between the box and
the central conductor of the microwave cavity, Cg

m is the
capacitance between the nanoresonator and the box, and Cg

c

is the capacitance between the control gate and the box.
It is assumed that the CPB is configured as a charge qubit,

meaning that EC�EJ. The couplings between the CPB and
the cavity,32 and between the CPB and the nanoresonator33

are given by, respectively,

�g = e
Cg

C


���c

cL
, �� = 4ECng

m�x

d
. �2�

Here c is the capacitance per unit length of the microwave
cavity, L is the length of the microwave cavity, �x is the half
width of the nanoresonator ground-state wave function, and
d is the equilibrium separation of the nanoresonator and the
CPB.

First we rotate into the energy eigenbasis of the uncoupled
qubit; the natural basis for a treatment of dissipation. Addi-
tionally transforming into an interaction picture with respect
to H1=��ca

†a

HI1
= ��mb†b +

��

2
�z + ���b + b†�� �

�
�z −

�

�
�x�

+ �g�ae−i�ct + a†ei�ct�� �

�
�z −

�

�
�x� , �3�

where the CPB energy splitting is �=��2+�2.
In the absence of resonant terms in the coupling between

the nanoresonator and the CPB, we make a Schrieffer-Wolff

transformation34 to extract a resonant second-order coupling;
HI1

SW=S†HI1
S, where S=exp�i��� /�2��y�b+b†��. This is es-

sentially equivalent to considering the dispersive limit of the
coupling between a qubit and an oscillator. Retaining terms
to linear order in �� /�2, transforming to another interaction
picture with respect to H2=���c /2��z+��mb†b and employ-
ing the rotating-wave approximation to neglect rapidly oscil-
lating terms, we find

HI2
= �� + �b†b��z + �g��a�+ + a†�−� , �4�

where = ��−�c� /2 is the detuning between the CPB and
the cavity, g�=−g� /� is the effective coupling to the cavity,
and �=4�2�2 /�3 is the effective coupling to the nanoreso-
nator. The cavity has a Jaynes-Cummings coupling to the
CPB, which itself is dispersively coupled to the nanoresona-
tor.

III. CONDITIONAL DYNAMICS UNDER HOMODYNE
DETECTION

We consider the conditional evolution of the system de-
scribed by Eq. �4� under homodyne detection of the field
output from the microwave cavity. There exist proposals for
near quantum-limited measurement of the quadratures of a
microwave field.35,36 It is assumed that the microwave field,
leaking out of the cavity at a rate �, is subject to homodyne
detection with respect to a local oscillator phase � and with
an efficiency �, that the nanoresonator is damped at a rate �
into a thermal environment characterized by the occupation
nm

0 , and that the CPB experiences spontaneous emission at a
rate �q. The effect of the Schrieffer-Wolff transformation on
dissipative terms may be neglected under the joint assump-
tions of weak damping and �� /�2�1. The master equation
describing the conditional evolution of the system is

d� = −
i

�
�HI2

,��dt + ��nm
0 + 1�D�b��dt + �nm

0 D�b†��dt

+ �D�a��dt + �qD��−��dt + ���H�ae−i���dW �5�

with dr= �ae−i�+a†ei�	dt+dW /��� as the measurement
record increment �where dW is the Wiener increment�,
D�s��=s�s†− 1

2s†s�− 1
2�s†s as the dissipative superoperator

and H�s��=s�+�s†−tr�s�+�s†�� as the measurement
superoperator.37

In the good-measurement limit, the cavity damping rate is
large, �� ,� ,g�, and we may adiabatically eliminate the
cavity mode. This is easily done by solving the quantum
Langevin equation in the limit of large damping to find
a= �−2ig� /���−. Substitution into the conditional master
equation above leads to a conditional master equation for the
reduced density operator describing the CPB and the nan-
oresonator, �r�t�=trcavity��t�

d�r = − i�� + �b†b��z,�r�dt + �qD��−��rdt

+ ��nm
0 + 1�D�b��rdt + �nm

0 D�b†��rdt + �D��−��rdt

+ ���H��−e−i��+�/2���rdW , �6�

where the measurement rate is �=4g�2 /� and the measure-
ment record increment �setting �=−�� is
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dr =��

�
��y	dt +

dW
���

. �7�

The associated measurement current is defined through
dr
 I�t�dt.

IV. FEEDBACK CONTROL

Now Eq. �6� describes a dissipative measurement of the
CPB; the measurement perturbs the observable from which
we wish to extract information about the nanoresonator. One
may consider using state-based feedback control38 of the
CPB to optimally extract information from the measurement;
for example, one may lock the net detuning �+�b†b� to zero
such that the CPB observable with a reactive response to the
detuning exhibits optimal sensitivity to the nanoresonator
state.

However, a simpler alternative is afforded by Hamiltonian
feedback control using the measurement record.39 Assuming
that the feedback may be applied fast on the time scale of
system dynamics, we may apply the Markovian homodyne
feedback master equation. Consider a density matrix �
evolving according to the homodyne measurement master
equation in Lindblad form

d� = −
i

�
�H,��dt + kD�c��dt + ��kH�c��dW �8�

and having the associated homodyne measurement current

I�t� = �c + c†	�t� + ��t�/��k , �9�

where k is the measurement rate and ��t�=dW /dt. Then, if
one applies Markovian feedback using the homodyne mea-
surement current according to the Hamiltonian

Hfb�t� = ��FI�t� �10�

then according to the quantum theory of continuous
feedback,40 the system evolution is given by

d� = −
i

�
�H,��dt −

i

2
��c†F + Fc,��dt + D��kc − i

�

�k
F��dt

+
�2

k

1 − �

�
D�F��dt + H���kc − i�F/��k��dW . �11�

Now applying the Hamiltonian feedback of Eq. �10� to the
system described by Eq. �6� with the identification c
 i�− in
Eq. �11�, we find

d�r = − i�� + �b†b��z,�r�dt + �qD��−��rdt

+ ��nm
0 + 1�D�b��rdt + �nm

0 D�b†��rdt

+
�2

�

1 − �

�
D�F��rdt + D����− −

�

��
F��rdt

+
�

2
�F�− − �+F,�r�dt + H�i����− − i�F/�����rdW .

�12�

In general, the feedback will alter the Hamiltonian, dissipa-
tive, and measurement dynamics.

V. NONDISSIPATIVE MEASUREMENT

Now it is possible, in the case of unit detection efficiency,
to create a nondissipative measurement of �y from a
dissipative measurement.26 In order to achieve such a mea-
surement here, we require that �F= ��� /2��x. The corre-
sponding feedback Hamiltonian, given by Eq. �10�, is in a
rotated qubit basis and an interaction picture, as per Eq. �4�.
In the Schrödinger picture and charge basis of Eq. �1�, the
required feedback term is −�E fb�t�cos �t�̄z, where
E fb�t�= ���� /��I�t�. That is, the homodyne measurement
record must be used to modulate the CPB charge bias, con-
trolled through Vg

c, to create a nondissipative measurement of
�y.

The associated homodyne feedback master equation is

d�r = − i�� + �b†b��z,�r�dt + �qD��−��rdt

+ ��nm
0 + 1�D�b��rdt + �nm

0 D�b†��rdt

+ �D��− −
�

2
�x��rdt + �1 − ��

��

4
D��x��rdt

+ ���H��y/2��rdW . �13�

Here there is no alteration to the Hamiltonian dynamics,
though for inefficient detection, the feedback also introduces
a dephasing of �x and the measurement becomes dissipative.

VI. SIMULATIONS

It is assumed that the nanoresonator has a resonance fre-
quency �m /2�=10 MHz and a mass m=10−15 kg, corre-
sponding to ground-state half width of �x=29 fm. These are
reasonable parameters for a nanoresonator fabricated within
a superconducting microwave cavity.44 The CPB is charac-
terized by �=5�1010 s−1, ng

m=1 /2 such that �=0, and
hence �=5�1010 s−1, resonant with the cavity at
�c=5�1010 s−1; such values are typical for circuit QED
experiments.18 The cavity damping rate is �=107 s−1, and

FIG. 1. �Color online� Evolution of: �a� phonon number �b†b	
and �b� phonon number variance Var�b†b�
��b†b�2	− �b†b	2 for a
typical trajectory assuming unit detection efficiency ��=1�. Param-
eters are as given in the body of the text. The inset shows the
conditioning onto a Fock state that occurs on a time scale short
compared to that required for the observation of retroactive quan-
tum jumps.
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the assumed mechanical quality factor is, an admittedly high,
2�107. The bare qubit-nanoresonator coupling is
� /2�=1.5 MHz and the bare qubit-cavity coupling is
g /2�=200 kHz, both of which are achievable.15,18 The
effective CPB-nanoresonator coupling is �=2.56�103 s−1

and the effective qubit-cavity coupling is
g�=−7.56�105 s−1. The effect of the cavity is quantified by
the measurement rate �=2.29�105 s−1 and spontaneous
emission from the qubit occurs at a rate �q=104 s−1.

Simulations of the mixed-state evolution of the
nanoresonator-qubit system according to Eq. �13� were per-
formed using an explicit Milstein scheme.41 Since this is an
instance of a partially observed system, conventional pure-
state unravellings42 of the master equation are not applicable,
though techniques for pure-state unravellings using the con-
cept of ostensible trajectories have been developed.43

Figures 1�a� and 1�b� show, respectively, the evolution of
�b†b	 and Var�b†b� over the course of a typical quantum
trajectory assuming unit detection efficiency. The initial state
in this case is a thermal state with n̄=2 and no coherent
amplitude. This is close to the level of cooling recently
achieved in a microwave cavity optomechanical system
through resolved sideband cooling.44 From Fig. 1�a� it is
seen that the effect of the measurement is to condition the
nanoresonator onto a state with an integer �b†b	 and from
Fig. 1�b� it is seen that Var�b†b� goes to zero, verifying that
the nanoresonator has been projected onto a Fock state by
virtue of the indirect measurement. In the absence of the
measurement, the variance would tend to nm

0 �nm
0 +1�, in equi-

librium with the thermal mechanical heat bath. After some
time, jumps between adjacent Fock states are observed, cor-
responding to the emission and absorption of quanta to/from
the thermal mechanical heat bath. These have previously
been termed retroactive quantum jumps,45 and arise from the

interplay of system and measurement dynamics, in spite of
the lack of explicit jump terms in the stochastic master equa-
tion.

Figure 2 shows the interaction picture evolution of the
measured observable �y over a short interval of the simula-
tion shown in Fig. 1. The measurement acts to put the qubit
into an eigenstate of �y while the free Hamiltonian �z com-
ponent drives oscillations of ��y	 at a frequency dependent
on the phonon number of the nanoresonator. The dominant
effect is determined by the relative magnitudes of the mea-
surement rate � and the Hamiltonian coupling coefficient
��b†b	. In Fig. 2, both effects are observable, and it is clear
that by monitoring ��y	, one acquires information about
�b†b	.

In the presence of detector inefficiency, one still observes
projection onto the nanoresonator’s Fock states, though a
longer time is required for this to be achieved. As shown in
Fig. 3, the fluctuations in phonon number variance observed
in the case of inefficient detection tend to be greater than
those observed in the case of efficient detection.

VII. CONCLUSIONS

Microwave cavities provide a natural environment for the
application of quantum control protocols; the emission of a
qubit can be effectively confined by the microwave cavity,
and one can feed back onto the qubit or the microwave cav-
ity on a time scale comparable to the system frequencies.
Here we propose a system that exploits this possibility by
using feedback control of a Cooper pair box qubit to imple-
ment a quantum nondemolition of the Fock state of a nano-
mechanical resonator. The most significant experimental
challenges are the fabrication of mechanical resonators with
sufficiently high-quality factors and the efficient measure-
ment of a quadrature of the microwave cavity field.
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